Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bing-Xin Liu,^a Jian-Yong Yu^a and Duan-Jun Xu^b*

^aDepartment of Chemistry, Shanghai University, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.005 Å R factor = 0.056 wR factor = 0.137 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2-anilinobenzoato- κ O)diaqua(2,2'-diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N^1, N^{1'}$)magnesium(II)

In the title complex, $[Mg(C_{13}H_{10}NO_2)_2(C_6H_6N_4S_2)(H_2O)_2]$, the Mg^{II} ion is coordinated by two 2-anilinobenzoate anions, two water molecules and an 2-anilinobenzoate molecule in a distorted octahedral geometry. The two thiazole rings in the diaminobithiazole molecule are nearly coplanar, with a dihedral angle of 3.88 (17)°. The two benzene rings in each 2-anilinobenzoate anion are twisted with respect to each other, the dihedral angles being 56.32 (12) and 45.68 (12)° in the two anions.

Comment

We are interested in metal complexes with diaminobithiazole (DABT) because of their potential magnetic properties (Sun *et al.*, 1997). As part of an ongoing investigation on DABT complexes (Liu *et al.*, 2001), we present here the structure of the title Mg^{II} complex, (I).

Two 2-anilinobenzoate anions, two water molecules and one DABT molecule coordinate to the Mg^{II} ion in a distorted octahedral geometry (Fig. 1 and Table 1). The DABT molecule is close to planar, with a dihedral angle of $3.88 (17)^{\circ}$ between the thiazole rings, comparable to that of $2.35 (12)^{\circ}$ found in a Cd^{II} complex of DABT with glycinate (Liu *et al.*, 2005). The two benzene rings in each 2-anilinobenzoate anion are twisted relative to each other, the dihedral angles being 56.32 (12)° and 45.68 (12)°.

An intra- and intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bonding network stabilizes the molecular and crystal structure (Table 2).

Experimental

An aqueous solution (20 ml) containing DABT (1 mmol) and $MgSO_4$ (1 mmol) was mixed with another aqueous solution (10 ml) of *N*-phenylanthranilic acid (2 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. The solution was filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after two weeks.

© 2006 International Union of Crystallography All rights reserved Received 20 December 2005 Accepted 3 January 2006

metal-organic papers

 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

reflections

 $\theta = 2.8 - 25.0^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$

T = 295 (2) K

Prism, yellow

 $R_{\rm int} = 0.052$

 $\theta_{\rm max} = 27.5^\circ$

 $h = -18 \rightarrow 15$

 $k=-25\rightarrow 22$

 $l = -15 \rightarrow 15$

Cell parameters from 7560

 $0.20 \times 0.17 \times 0.13 \text{ mm}$

7620 independent reflections 4001 reflections with $I > 2\sigma(I)$

Crystal data

 $[Mg(C_{13}H_{10}NO_2)_2(C_6H_6N_4S_2) (H_2O)_2$] $M_r = 683.05$ Monoclinic, $P2_1/c$ a = 14.0151 (3) Å b = 19.8832 (4) Å c = 12.0345 (3) Å $\beta = 98.3200 \ (11)^{\circ}$ $V = 3318.30(13) \text{ Å}^3$ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.945, T_{\max} = 0.980$ 23565 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0509P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 0.2965P]
$wR(F^2) = 0.137$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
7620 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
424 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

Mg-O1	2.0846 (18)	Mg-O31	2.0804 (18)
Mg-O2	2.1087 (18)	Mg-N1	2.184 (2)
Mg-O11	2.0522 (17)	Mg-N2	2.182 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O12^{i}$	0.89	1.83	2.716 (2)	171
O1−H1 <i>B</i> ···O32	0.84	1.93	2.598 (2)	136
$O2-H2A\cdots O12$	0.90	1.83	2.654 (2)	151
N3−H3A···O2	0.82	2.23	3.005 (3)	157
N3-H3B···N6 ⁱⁱ	0.82	2.56	3.203 (3)	137
$N4-H4A\cdotsO1$	0.85	2.22	2.983 (3)	150
N4-H4 B ···O32 ⁱⁱⁱ	0.86	2.07	2.921 (3)	169
N5−H5B···O11	0.86	1.91	2.606 (3)	137
N6-H6···O31	0.86	1.97	2.667 (3)	137
-	(1) · · · ·		(m) .	1 . 1 /***

Symmetry codes: $x, -y + \frac{1}{2}, z + \frac{1}{2};$ (i) -x+1, -y+1, -z+1;(ii) (iii) -x + 1, -y + 1, -z

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.

Amino H atoms and water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{iso}(H) = 1.2U_{eq}(carrier)$. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, m2291-m2293.
- Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. & Chiang, M.-Y. (2001). Acta Crvst. C57, 354-355.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sun, W., Gao, X. & Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309-2315.