Acta Crystallographica Section E

Structure Reports

Online

Bis(2-anilinobenzoato- κO)diaqua($2,2^{\prime}$-diamino-4,4'-bi-1,3-thiazole- $\kappa^{2} N^{1}, N^{1^{\prime}}$)magnesium(II)

ISSN 1600-5368

Bing-Xin Liu, Jian-Yong Yu ${ }^{\text {a }}$ and Duan-Jun Xu ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Shanghai University, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's
Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.137$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title complex, $\left[\mathrm{Mg}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Mg}^{\mathrm{II}}$ ion is coordinated by two 2 -anilinobenzoate anions, two water molecules and an 2-anilinobenzoate molecule in a distorted octahedral geometry. The two thiazole rings in the diaminobithiazole molecule are nearly coplanar, with a dihedral angle of $3.88(17)^{\circ}$. The two benzene rings in each 2-anilinobenzoate anion are twisted with respect to each other, the dihedral angles being 56.32 (12) and 45.68 (12) ${ }^{\circ}$ in the two anions.

Comment

We are interested in metal complexes with diaminobithiazole (DABT) because of their potential magnetic properties (Sun et al., 1997). As part of an ongoing investigation on DABT complexes (Liu et al., 2001), we present here the structure of the title $\mathrm{Mg}^{\mathrm{II}}$ complex, (I).

(I)

Two 2-anilinobenzoate anions, two water molecules and one DABT molecule coordinate to the $\mathrm{Mg}^{\mathrm{II}}$ ion in a distorted octahedral geometry (Fig. 1 and Table 1). The DABT molecule is close to planar, with a dihedral angle of $3.88(17)^{\circ}$ between the thiazole rings, comparable to that of $2.35(12)^{\circ}$ found in a $\mathrm{Cd}^{\text {II }}$ complex of DABT with glycinate (Liu et al., 2005). The two benzene rings in each 2-anilinobenzoate anion are twisted relative to each other, the dihedral angles being $56.32(12)^{\circ}$ and 45.68 (12) .

An intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network stabilizes the molecular and crystal structure (Table 2).

Experimental

An aqueous solution (20 ml) containing DABT (1 mmol) and MgSO_{4} (1 mmol) was mixed with another aqueous solution (10 ml) of N phenylanthranilic acid (2 mmol) and $\mathrm{NaOH}(2 \mathrm{mmol})$. The mixture was refluxed for 5 h . The solution was filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after two weeks.

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)-\right.$
$\left.\quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=683.05$
Monoclinic, $P 2_{1} / c$
$a=14.0151(3) \AA$
$b=19.8832(4) \AA$
$c=12.0345(3) \AA$
$\beta=98.3200(11)^{\circ}$
$V=3318.30(13) \AA^{3}$
$Z=4$

Data collection
Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.945, T_{\text {max }}=0.980$
23565 measured reflections
$D_{x}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7560
reflections
$\theta=2.8-25.0^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, yellow
$0.20 \times 0.17 \times 0.13 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.137$
$S=1.02$
7620 reflections
424 parameters
H-atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{Mg}-\mathrm{O} 1$	$2.0846(18)$	$\mathrm{Mg}-\mathrm{O} 31$	$2.0804(18)$
$\mathrm{Mg}-\mathrm{O} 2$	$2.1087(18)$	$\mathrm{Mg}-\mathrm{N} 1$	$2.184(2)$
$\mathrm{Mg}-\mathrm{O} 11$	$2.0522(17)$	$\mathrm{Mg}-\mathrm{N} 2$	$2.182(2)$

Table 2

Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{O} 12^{\mathrm{i}}$	0.89	1.83	$2.716(2)$	171
O1-H1B \cdots O32	0.84	1.93	$2.598(2)$	136
O2-H2A \cdots O12	0.90	1.83	$2.654(2)$	151
N3-H3A \cdots O2	0.82	2.23	$3.005(3)$	157
N3-H3B \cdots N6				
N4-H4A	0.82	2.56	$3.203(3)$	137
N4-H4B \cdots O32	0.85	2.22	$2.983(3)$	150
N5-H5B \cdots O11	0.86	2.07	$2.921(3)$	169
N6-H6 \cdots O31	0.86	1.91	$2.606(3)$	137
Symmetry codes:	(i)	$-x+1,-y+1,-z+1 ;$	(ii) $x,-y+\frac{1}{2}, z+\frac{1}{2} ;$	(iii)
$-x+1,-y+1,-z$.				

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.

Amino H atoms and water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier). Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, B.-X., Yu, J.-Y. \& Xu, D.-J. (2005). Acta Cryst. E61, m2291-m2293.
Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M.-Y. (2001). Acta Cryst. C57, 354-355.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sun, W., Gao, X. \& Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309-2315.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

